Affiliation:
1. Department of Mechanical and Management Engineering, Politecnico di Bari, Bari, Italy
2. Laboratory of Biological Structure Mechanics, Department of Structural Engineering, Politecnico di Milano, Milano, Italy
Abstract
The aim of this work is to assess the fracture risk prediction of the cancellous bone in the body of a lumbar vertebra when the mechanical parameters of the bone, i.e. stiffness, porosity, and strength anisotropy, of elderly and osteoporotic subjects are considered. For this purpose, a non-linear three-dimensional continuum-based finite element model of the lumbar functional spinal unit L4—L5 was created and strength analyses of the spongy tissue of the vertebral body were carried out. A fabric-dependent strength criterion, which accounts for the micro-architecture of the cancellous bone, based on histomorphometric analyses was used. The strength analyses have shown that the cancellous bone of none of the subject types undergoes failure under loading applied during normal daily life like axial compression; however, bone failure occurs for the osteoporotic segment, subjected to a combination of the compression preloading and moments in the sagittal or in the frontal plane, which are conditions that may not be considered to occur ‘daily’. In particular, critical stress conditions are met because of the high porosity values in the horizontal direction within the cancellous bone. The computational approach presented in the paper can potentially predict the material fracture risk of the cancellous bone in the vertebral body and it may be usefully employed to draw failure maps representing, for a given micro-architecture of the spongy tissue, the critical loading conditions (forces and moments) that may lead to such a risk. This approach could be further developed in order to assess the effectiveness of biomedical devices within an engineering approach to the clinical problem of the spinal diseases.
Subject
Mechanical Engineering,General Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献