Computational assessment of press-fit acetabular implant fixation: The effect of implant design, interference fit, bone quality, and frictional properties

Author:

Janssen D1,Zwartelé R E2,Doets H C2,Verdonschot N1

Affiliation:

1. Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

2. Orthopaedic Department, Slotervaartziekenhuis, Amsterdam, The Netherlands

Abstract

Patients suffering from rheumatoid arthritis typically have a poor subchondral bone quality, endangering implant fixation. Using finite element analysis (FEA) an investigation was made to find whether a press-fit acetabular implant with a polar clearance would reduce interfacial micromotions and improve fixation compared with a standard hemispherical design. In addition, the effects of interference fit, friction, and implant material were analysed. Cups were introduced into an FEA model of a human pelvis with simulated subchondral bone plasticity. The models were loaded with a loading configuration simulating two cycles of normal walking, during which contact stresses and interfacial micromotions were monitored. Subsequently, a lever-out simulation was performed to assess the fixation strength of the various cases. A flattened cup with good bone quality produced the lowest interfacial micromotions. Poor bone decreased the fixation strength regardless of the geometry of the cup. Increasing the interference fit of the flattened cup compensated for the loss of fixation strength caused by poor bone quality. In conclusion, a flattened cup did not significantly improve implant fixation over a hemispherical cup in the case of poor bone quality. However, implant fixation can be optimized by increasing interference fit and avoiding inferior frictional properties and low-stiffness implants.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3