Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging

Author:

Long Q1,Merrifield R2,Xu X Y3,Kilner P4,Firmin D N4,Yang G-Z2

Affiliation:

1. Brunel Institute for Bioengineering, Brunel University, Uxbridge, UK

2. Institute of Biomedical Engineering, Imperial College London, London, UK

3. Department of Chemical Engineering and Chemical Technology, Imperial College London, London, UK

4. Cardiovascular MR Unit, Royal Brompton Hospital, Imperial College London, London, UK

Abstract

A detailed investigation of left ventricle (LV) flow patterns could improve our understanding of the function of the heart and provide further insight into the mechanisms of heart failure. This study presents patient-specific modelling with magnetic resonance imaging (MRI) to investigate LV blood flow patterns in normal subjects. In the study, the prescribed LV wall movements based on the MRI measurements drove the blood flow in and out of the LV in computational fluid dynamics simulation. For the six subjects studied, the simulated LV flow swirls towards the aortic valve and is ejected into the ascending aorta with a vertical flow pattern that follows the left-hand rule. In diastole, the inflow adopts a reasonably straight route (with no significant secondary flow) towards the apex in the rapid filling phase with slight variations in the jet direction between different cases. When the jet reaches about two thirds of the distance from the inflow plane to the apex, the blood flow starts to change direction and swirls towards the apex. In the more slowly filling phase, a centrally located jet is evident with vortices located on both sides of the jet on an anterior—posterior plane that passes through the mitral and aortic valves. In the inferior—superior plane, a main vortex appears for most of the cases in which an anticlockwise vortex appears for three cases and a clockwise vortex occurs for one case. The simulated flow patterns agree well qualitatively with MRI-measured flow fields.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3