Wear particles from metal-on-metal total hip replacements: Effects of implant design and implantation time

Author:

Catelas I12,Campbell P A2,Bobyn J D13,Medley J B4,Huk O L5

Affiliation:

1. Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada

2. Joint Replacement Institute, Orthopaedic Hospital, Los Angeles, California, USA

3. Jo Miller Orthopaedic Research Laboratory, Montreal General Hospital, Montreal, Quebec, Canada

4. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada

5. Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, The Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada

Abstract

Detailed characterization of wear particles is necessary to understand better the implant wear mechanisms and the periprosthetic tissue response. The purposes of the present study were to compare particle characteristics of current with older designs of metal-on-metal (MM) total hip replacements (THRs), and to determine the effect of implantation time on wear particle characteristics. Metal wear particles isolated from periprosthetic tissues from 19 patients with MM THRs of current and older designs and at different implantation times (very short, longer, and very long) were studied using transmission electron microscopy and energy dispersive X-ray analysis. The particles from the current design implants with implantation times of not more than 15 months (very short term) were almost exclusively round to oval chromium oxide particles. In all other cases, although the predominance was still round to oval chromium oxide particles, greater proportions of cobalt-chromium-molybdenum (Co-Cr-Mo) particles, mainly needle-shaped, were detected. Very long term THRs implanted for more than 20 years had the highest percentage of needle-shaped Co-Cr-Mo particles. Particle lengths were not markedly different between the different designs and implantation times except for the current design implants of not more than 15 months, which had a significantly smaller mean length of 39 nm. In conclusion, the implant design did not seem to have a significant influence on particle characteristics whereas the implantation time appeared to have the most effect on the particles. It should be noted that, because of the limited number of tissue retrievals available, some uncertainty remains regarding the generality of these findings.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3