The Quantitative Effect of Diamond Grit Size on the Subsurface Damage Induced in Dental Adjustment of Porcelain Surfaces

Author:

Song X-F1,Yin L2

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin, People's Republic of China

2. School of Engineering & Physical Sciences, James Cook University, Queensland, Australia

Abstract

Diamond burs with different grit sizes are often applied to adjust ceramic prostheses in restorative dentistry. However, the quantitative influence of diamond grit size on subsurface damage in adjusting ceramic prostheses is unknown. The aim of this study was to investigate and visualize the quantitative effect of diamond bur grit size on subsurface damage in dental adjusting of a feldspar prosthetic porcelain. Diamond burs with coarse (106—125 μm), medium (53—60 μm), and fine (10—20 μm) grit sizes were selected. Dental adjusting-induced subsurface damage was quantitatively investigated with the aid of finite element analysis (FEA) and scanning electron microscopy (SEM). Significant differences in subsurface damage depth were found among the coarse, medium, and fine diamond burs (ANOVA, p < 0.05). Coarse diamond burs induced approximately 6—8 times deeper subsurface damage than fine burs. Diamond grit size is confirmed to be a controlling factor in determining the degree of subsurface damage. Subsurface damage depths also significantly increased with removal rate (ANOVA, p < 0.05). The correlation of the SEM-measured subsurface damage depths and the diamond grit sizes supports the FEA predictions. From a practical standpoint, dental porcelains should be adjusted using smaller diamond grit sizes with lower removal rates to minimize subsurface damage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3