Reality-augmented virtual fluoroscopy for computer-assisted diaphyseal long bone fracture osteosynthesis: A novel technique and feasibility study results

Author:

Zheng G1,Dong X1,Gruetzner P A2

Affiliation:

1. MEM Research Center, University of Bern, Bern, Switzerland

2. Katharinenhospital, Stuttgart, Germany

Abstract

In this paper, a novel technique to create a reality-augmented virtual fluoroscopy for computer-assisted diaphyseal long bone fracture osteosynthesis and feasibility study results are presented. With this novel technique, repositioning of bone fragments during closed fracture reduction and osteosynthesis can lead to image updates in the virtual imaging planes of all acquired images without any radiation. The technique is achieved with a two-stage method. After acquiring a few (normally two) calibrated fluoroscopic images and before fracture reduction, the first stage, data preparation, interactively identifies and segments the bone fragments from the background in each image. After that, the second stage, image updates, repositions the fragment projection on to each virtual imaging plane in real time during fracture reduction and osteosynthesis using an OpenGL-based texture warping. Combined with a photorealistic virtual implant model rendering technique, the present technique allows the control of a closed indirect fracture osteosynthesis in the real world through direct insight into the virtual world. The first clinical study results show the reduction in the X-ray radiation to the patient as well as to the surgical team, and the improved operative precision, guaranteeing more safety for the patient. Furthermore, based on the experiences gained from this clinical study, two technical enhancements are proposed. One focuses on eliminating the user interactions with automated identifications and segmentations of bone fragments. The other focuses on providing non-photorealistic implant visualization. Further experiments are performed to validate the effectiveness of the proposed enhancements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review;Annals of Biomedical Engineering;2019-07-29

2. Augmented Reality in Orthopaedic Interventions and Education;Computational Radiology for Orthopaedic Interventions;2015-09-11

3. The state of the art of visualization in mixed reality image guided surgery;Computerized Medical Imaging and Graphics;2013-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3