Biotribological investigation of a multi-tube foot for traction generation in a medical microrobot

Author:

Kim Y-T1,Kim D-E1

Affiliation:

1. Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea

Abstract

In recent years, efforts to develop microrobots for medical applications have been expanding. One of the key design issues in such microrobots is to attain adequate frictional interaction between the robotic foot and the organ tissue. In particular, it is important to generate the necessary frictional force without damaging the tissue. In this work, a design for the robotic foot was proposed on the basis of the frictional behaviour of a tube structure. Fundamental experiments were initially performed to understand the biotribological behaviour of the tube and rod structures. The design was then modified to a multi-tube structure to achieve adequate frictional behaviour. Biotribological investigation of a multi-tube foot in contact with a small intestine specimen of a pig was conducted using a pin-on-reciprocator type biotribotester. It was found that there is an optimum number and arrangement of the tubes for generating high frictional force. Experimental results showed that a nine-tube foot had the highest initial friction coefficient of about 1.5. The major frictional mechanism was determined to be interlocking between the tubes and the surface structures of the intestine specimen. The results of this work will aid the optimum design of frictional surface for medical microrobots and other biological devices.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3