On the effect of dynamic flow conditions on blood microstructure investigated with optical shearing microscopy and rheometry

Author:

Kaliviotis E1,Yianneskis M1

Affiliation:

1. Department of Mechanical Engineering, Experimental and Computational Laboratory for the Analysis of Turbulence, King's College London, London, UK

Abstract

Red blood cell (RBC) aggregation affects significantly the flow of blood at low shear rates. Increased RBC aggregation is associated with various pathological conditions; hence an accurate quantification and better understanding of the phenomenon is important. The present study aims to improve understanding of the effect of dynamic flow conditions on aggregate formation; whole blood samples from healthy volunteers, adjusted at 0.45 haematocrit were tested in different flow conditions with a plate-plate optical shearing system, image analysis, and a double-walled Couette rheometric cell. Results are presented in terms of aggregation index Aa, aggregate size index As and number of aggregates, which are shown to vary with shear rate γ and with different shear rate variations with time γ. The aggregation index Aa was observed to increase as the shear rate decreased between 10 and 3 s−1. Above 10 s−1, Aa was found to have a minimum value indicating minimal aggregation while, at approximately 3 s−1, Aa reaches a maximum. The aggregation size index As, the number of aggregates, and the blood viscosity were found to vary considerably when the same sample was examined over the same shear rate range, but for different variations of shear rate with time, γ.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3