Intelligent tool wear identification based on optical scattering image and hybrid artificial intelligence techniques

Author:

Li X Q1,Wong Y S1,Nee A Y C1

Affiliation:

1. National University of Singapore Mechanical and Production Engineering Department

Abstract

Tool wear monitoring is crucial for an automated machining system to maintain consistent quality of machined parts and prevent damage to the parts during the machining operation. A vision-based approach is presented for tool wear identification in finish turning using an adaptive resonance theory (ART2) neural network embedded with fuzzy classifiers. The proposed approach is established upon the fact that the optical scattering image of a turned surface is related to the wear of the cutting tool. By applying the technique of the ART2 neural network embedded with fuzzy classifiers, the state of wear of the turning tool is determined from captured images obtained by laser scattering from the machined surfaces of the workpiece. This approach is not unlike the visual inspection of the surface of a machined workpiece to determine the state of wear of a cutting tool by an expert machinist. However, experimental results indicate that the conventional technique of measuring surface finish does not give values that correlate well with tool wear. On the other hand, the laser scattering image provides a good indication of the tool wear as it is not readily affected by buildup edge or cold-welded material, scratches and other disruptive defects on the turned surface as the tool wears. In this paper, the theory on the laser scattering image and the principle of tool wear identification are described. Based on the scattering images, the proposed approach can correctly identify the condition of ‘significant wear’ prior to the rapid tool wear stage for the cutting tool.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3