Optimizing involute gear design for maximum bending strength and equivalent pitting resistance

Author:

Spitas V1,Spitas C2

Affiliation:

1. Laboratory of Applied Mechanics, Technical University of Crete, Athens, Greece

2. Department of Production Engineering and Management, Technical University of Crete, Athens, Greece

Abstract

Standard involute gear designs dominate high-power transmission applications because they combine sufficient bending strength with high pitting resistance, while retaining an adequate contact ratio. In this paper, a non-standard, optimal alternative involute gear design has been presented, which has the same pitting resistance as the standard involute gears but exhibits maximum resistance to bending. The optimization procedure is based on the complex algorithm, where the root stress, as calculated through tabulated boundary element analysis values, is the objective function and the active constraints include all of the kinematical, manufacturing and geometrical conditions, which must be satisfied by the optimal design, including the pitting resistance. The results indicate that optimal designs can achieve up to 8.5 per cent reduction of the fillet stress. Two-dimensional photoelasticity was used to verify the optimization results.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and application of high strength gears;The International Journal of Advanced Manufacturing Technology;2024-04-09

2. A Mathematical Model for Parametric Tooth Profile of Spur Gears;Mathematical Problems in Engineering;2020-02-24

3. Load Carrying Capacity of Spur and Helical Gears: Influence Factors and Load Analysis;Springer Series in Solid and Structural Mechanics;2020

4. Study on the Optimization Model of a Flexible Transmission;Mathematical Problems in Engineering;2019-07-08

5. Optimum design of involute tooth profiles for K-H-V planetary drives with small teeth number differences;Journal of Advanced Mechanical Design, Systems, and Manufacturing;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3