The fundamental principles and design considerations for the implementation of centrifugal reverse osmosis

Author:

Wild P M1,Vickers G W1,Djilali N1

Affiliation:

1. University of Victoria Department of Mechanical Engineering British Columbia, Canada

Abstract

The paper describes the fundamental principles of a new desalination technology, centrifugal reverse osmosis (CRO), which offers significant benefits relative to the leading existing desalination technology, conventional reverse osmosis. Relations are developed that quantify the primary benefit of the process, reduced energy consumption, and it is shown that the energy efficiency of the process increases with system capacity. Other benefits are discussed, including lower membrane costs and enhanced reliability. The key technical obstacles to the practical implementation of centrifugal reverse osmosis are identified as well as novel and patented design features which overcome these obstacles. A prototype which incorporates these features has been designed, built and tested aboard the Canadian Forces vessel, the St Anthony.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical analysis of an improved adsorption desalination system under different operating conditions;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2021-01-26

2. Centrifugal nanofiltration for small-volume samples;Journal of Membrane Science;2017-10

3. An experimental assessment of centrifugal membrane separation using spiral wound RO membrane elements;Desalination;2003-05

4. Advanced Filtration And Carbon Adsorption;Physical-Chemical Treatment of Water and Wastewater;2002-07-29

5. Fundamental aspects of centrifugal membrane separation;Proceedings of the I MECH E Part E Journal of Process Mechanical Engineerin;2001-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3