Three-dimensional kinetic theory approach for laser pulse heating

Author:

Yilbas B. S.1,Sami M1

Affiliation:

1. King Fahd University of Petroleum and Minerals Department of Mechanical Engineering Dhahran, Saudi Arabia

Abstract

Lasers are widely used as a machine tool in the metal industry. One of the important areas of laser application is surface treatment of engineering metals. To improve the process parameters in the laser heating process, an exploration of the heating mechanism is fruitful. The present study is carried out to develop a three-dimensional model for a laser pulsed heating process using the electron kinetic theory approach. The heating model introduced relies on successive electronphonon collisions; therefore, it is this process that describes the heat conduction mechanism. This study is limited to heat conduction only. Consequently, the phase change process is not taken into account. To validate the theoretical predictions, an experiment is conducted to measure the surface temperature using an optical method. Moreover, a one-dimensional heating model developed previously is also considered and the predictions of three- and one-dimensional heating models as well as experimental results are compared. It is found that the three-dimensional model gives lower surface temperatures compared with the one-dimensional model considered. However, experimental results agree well with the results obtained from the three-dimensional model. In addition, an equilibrium time is introduced. In that case, energy gain of electrons via incident beam absorption balances the energy losses due to conduction through successive electron-phonon collisions.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3