A new isothermal theory for Stirling machine analysis and a volume optimization using the concept of ‘ancillary’ and ‘tidal’ domains

Author:

Finkelstein T1

Affiliation:

1. Stirling Associates International Beverly Hills, California, USA

Abstract

Theoretical studies of Stirling cycle machines have always utilized a topological system view that goes back to Schmidt's isothermal analysis, where the process is analysed by reference to the expansion space volume variations. Due to this idiosyncrasy in the formulation, it has been difficult to deduce meaningful design criteria from the results. In this paper an alternative visualization is presented, using the newly introduced concepts of a ‘tidal phase angle’ and overlapping ‘tidal’ and ‘ancillary’ domains. With vectorial parameters and a centralized reference basis, a non-dimensional parameter Rcaronfr;tcr, the ‘tidal compression ratio’, equal to the ratio of the average masses in the tidal and ancillary domains, is derived. This number uniquely characterizes the operation of equivalent machines and is therefore akin to the compression ratio in internal combustion engines. On the basis of this, a second new parametric grouping emerged to enhance the usefulness of the resultant integrated equations for use with dimensional analysis. It was defined as the ‘specific performance’ Rcaronfr;sp and is proportional to the output per unit mass, the gas constant and the operating temperature range. It is applicable to engines, heat pumps and refrigerators. Prior attempts at optimizing the proportions of a Stirling engine have not yielded usable results and consequently nearly all Stirling cycle machines built up to the present time have expansion and compression spaces of equal size. The new analysis shows that this is not the most appropriate configuration and it readily yields an optimization of the component volumes. One single analytical conditional equation for the optimum relative sizes of the constituent spaces was obtained from the new formulation for performance that quantifies the condition for an optimized proportioning of any Stirling cycle machine. It has three distinct usable solutions, one of which is an analytical confirmation of a postulate that has previously been published by the author without proof, equating VE/ VC and also Vh/ Vk to the temperature ratio TE/ TC. A numerical verification of this rule based on the proportions of the United Stirling V-160 engine compares it with 12 equivalent re-proportioned derivative engines, all with equal charge masses and operating at precisely the same conditions. This shows a substantial increase in the ideal performance through the use of the derived criteria. The main conclusion is that this theory may lead to a re-examination of the overall layout of Stirling cycle machines and the emergence of a new class of machines with superior performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preliminary Computational Fluid Dynamics Modeling of STC Stirling Engines;2nd International Energy Conversion Engineering Conference;2004-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3