Analytical model of a particular type of positive displacement blower

Author:

Mimmi G1,Pennacchi P1

Affiliation:

1. Universitá degli Studi di Pavia Dipartimento di Meccanica Strutturale Italy

Abstract

Many papers exist in the literature that deal with the twin-screw compressor. This usually has two different rotors, a male and a female, and is commonly used to produce compressed gas for industrial uses. However, a different type of positive displacement rotary compressor with two screws is sometimes used, one of its typical applications being in car engine supercharging. The present paper deals with the latter type, which is defined as a two-screw blower. This blower has two identical helical rotors, each with three lobes. The kinematics and the geometry of the rotors are analysed here, and a complete mathematical model for the rotor is defined. Moreover, different possible shapes of the rotors, depending on the design parameters, are analysed and the limitations in the choice of the design parameters are presented. Finally, an analysis of the theoretical specific slipping of the rotors is presented, showing which zones of the profile are the most stressed. This model will be useful for further studies on rotor pressure loads and blower dynamics.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effects of design parameters on performance of a novel roots profile;International Journal of Hydrogen Energy;2023-01

2. Development and analysis of novel six-lobe helical rotors for hydrogen fuel cell vehicle roots blowers;International Journal of Hydrogen Energy;2021-08

3. Analysis and development of a roots-type air compressor with fixed internal compression for fuel cell system;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2021-07-05

4. Numerical simulation and experimental performance research of cylindrical vane pump;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-06-06

5. A novel profile with high efficiency for hydrogen-circulating Roots pumps used in FCVs;International Journal of Hydrogen Energy;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3