Aerodynamic modelling of multistage compressor flow fields Part 1: Analysis of rotor-stator-rotor aerodynamic interaction

Author:

Hall E J1

Affiliation:

1. Allison Engine Company Indianapolis, Indiana, USA

Abstract

The primary purpose of this study was to investigate improved numerical techniques for predicting flows through multistage compressors. The vehicle chosen for this study was the Pennsylvania State University Research Compressor (PSRC). The PSRC facility consists of a 3 1/2-stage axial flow compressor which shares design features which are consistent with embedded stages of modern gas turbine engine axial flow compressors. In Part 1 of this two-part paper, several computational fluid dynamics techniques were applied to predict both steady and unsteady flows through the PSRC facility. Interblade row coupling via a circumferentially averaged mixing-plane approach was employed for steady flow analysis. A mesh density sensitivity study was performed to define the minimum mesh requirements necessary to achieve reasonable agreement with the experimental data. Time-dependent flow predictions were performed using a time-dependent interblade row coupling technique. These calculations evaluated the aerodynamic interactions occurring between rotor 2, stator 2 and rotor 3 for the PSRC rig.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An experimental study of rotor-stator wake unsteadiness in a multistage axial compressor;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2020-12-08

2. Flow computations of multi-stages by URANS and flux balanced mixing models;Science China Technological Sciences;2018-06-08

3. Influence of Upstream and Downstream Compressor Stators on Rotor Exit Flow Field;International Journal of Rotating Machinery;2014

4. Computation of unsteady turbomachinery flows: Part 1—Progress and challenges;Progress in Aerospace Sciences;2011-10

5. Rotor Wake Variability in a Multistage Compressor;Journal of Propulsion and Power;2010-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3