High-Intensity Burners with Low Nox Emissions

Author:

Andrews G E1,Alkabie H S1,Aziz M M Abdul1,Hussain U S Abdul1,Dabbagh N A Al1,Ahmad N A1,Shaikly A F Ali Al1,Kowkabi M1,Shahabadi A R1

Affiliation:

1. Department of Fuel and Energy, University of Leeds

Abstract

Experimental combustion and NOx emissions results are summarized for a range of jet shear layer combustion systems that have rapid fuel and air mixing, short intense flames, a high turn-down ratio and low NOx characteristics. Two burner sizes of 76 and 140 mm are investigated for propane and natural gas. Three jet shear layer burners are compared with axial and radial swirlers. The combustion techniques were developed for application to low NOx combustion systems for industrial gas turbines, where NOx emissions as low as 10 ppm at 15 per cent oxygen have been demonstrated. It is shown that at one bar pressure, gas turbine combustors and high-intensity burners operate at similar air flow, blockage and pressure loss conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference22 articles.

1. The Influence of Premixed Combustion Flame Stabilizer Geometry on Flame Stability and Emissions

2. Al Dabbagh N. A., Andrews G. E. The influence of flame stabiliser pressure loss on mixing, combustion performance and flame stability. Sixth International Symposium on Air breathing engines, Paris, 1983, pp. 172–181 (AIAA, Washington).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3