The Influence of Injection Rate Shaping on Diesel Fuel Sprays—An Experimental Study

Author:

Winklhofer E1,Ahmadi-Befrui B1,Wiesler B1,Cresnoverh G1

Affiliation:

1. AVL-List GmbH, Graz, Austria

Abstract

A current strategy in the development of direct injection (DI) diesel engine combustion systems is the control and limitation of the initial ‘premixed’ combustion heat release ensuing from the auto-ignition of the injected fuel. This requires control of the amount of fuel vaporization and mixing taking place during the ignition delay time. Since the latter is determined by the fuel composition and the in-cylinder gas temperature, development efforts have focused on the injection of well-controlled, portioned fuel quantities prior to the ignition as a means of achieving the desired goal. This practice is becoming known as ‘fuel rate shaping’. Consequently, the fuel spray penetration during this period, fuel evaporation and mixture preparation, as well as the influence of in-cylinder air motion on mixture distribution, are main subjects of interest in affording insight into fuel rate shaping attempts. These have been addressed through a combined experimental and theoretical investigation of the spray characteristics associated with different injection practices. The experimental investigations have been performed in an optically accessed spray research engine. Basic aspects of fuel spray tip penetration, time and location of auto-ignition and flame propagation have been recorded with a high-speed line-scan camera. The results provide the space and time-scale characteristics for the propagation, ignition and combustion of a selection of diesel fuel sprays. Investigations have been carried out for a conventional fuel injection system equipped with a set of different single-hole injector nozzles, as well as for a dual-spring injector and an injector with a split injection device. The experimental results provide an insight into the propagation of the fuel spray front, yield qualitative information about its spatial and temporal distribution, and, in the case of split injection, show the interaction of the initial pilot fuel portion with the main injection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3