Part II. Research on the Performance of a Type of Internally Air-cooled Turbine Blade

Author:

Ainley D. G.1

Affiliation:

1. Head of Section responsible for research related to turbine design and performance, National Gas Turbine Establishment

Abstract

A comprehensive series of tests have been made on an experimental single-stage turbine to determine the cooling characteristics and the overall stage performance of a set of air-cooled turbine blades. These blades, which are described fully in Part I of this paper had, internally, a multiplicity of passages of small diameter along which cool air was passed through the whole length of the blade. Analysis of the, test data indicated that, when a quantity of cooling air amounting to 2 per cent, by weight, of the total gas-flow through the turbine is fed to the row of rotor blades, an increase in gas temperature of about 270 deg. C. (518 deg. F.) should be permissible above the maximum allowable value for a row of uncooled blades made from the same material. The degree of cooling achieved throughout each blade was far from uniform and large thermal stresses must result. It appears, however, that the consequences of this are not highly detrimental to the performance of the present type of blading, it being demonstrated that the main effect of the induced thermal stress is apparently to transfer the major tensile stresses to the cooler (and hence stronger) regions of the blade. The results obtained from the present investigations do not represent a limit to the potentialities of internal air-cooling, but form merely a first exploratory step. At the same time the practical feasibility of air cooling is made apparent, and advances up to the present are undoubtedly encouraging.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conjugate Heat Transfer in Air-to-Refrigerant Airfoil Heat Exchangers;Journal of Heat Transfer;2014-05-21

2. Heat Transfer to a Pvd Rotor Blade at High Subsonic Passage Throat Mach Numbers;Proceedings of the Institution of Mechanical Engineers;1978-06

3. Local Heat Transfer Measurements on a Gas Turbine Blade;Journal of Mechanical Engineering Science;1971-02

4. Transpiration Cooled Turbines;Proceedings of the Institution of Mechanical Engineers;1970-06

5. Paper 14: The Significance of Creep in Cooled Gas Turbine Blades;Proceedings of the Institution of Mechanical Engineers, Conference Proceedings;1963-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3