Determination of the Curvatures and Bending Strains in Open Trileaflet Heart Valves

Author:

Corden J1,David T1,Fisher J1

Affiliation:

1. Department of Mechanical Engineering, University of Leeds

Abstract

The leaflets of trileaflet artificial heart valves manufactured from polyurethane, gluteraldehyde-treated porcine aortic valves and pericardial tissue are subject to cyclic stresses and strains which can reduce the lifetime of the implanted valves through leaflet calcification and fatigue failure. A detailed knowledge of the stress state within a valve leaflet throughout a cardiac cycle is desirable in order to improve the geometry of the valve leaflets and ultimately improve the valve performance. An experimental method to evaluate the radius of curvature at the free edge of the open valve leaflet is presented. The technique has been applied to polyurethane trileaflet heart valves manufactured within the authors' laboratory and to commercially available bioprosthetic valves in the fully open position under steady and pulsatile flow conditions. Simple bending theory has been applied to the polyurethane valves to calculate bending stresses and strains at the free leaflet edge based on the measured curvature. The results showed that in the fully open position the highest curvatures occurred at the commissural regions for all the valves analysed. Additional areas of high curvature were present along the free leaflet edge. Average curvatures as high as 0.85 mm−1 were observed at the leaflet commissures for the polyurethane valves with a resultant bending stress of 0.72 MPa. The porcine bioprosthetic valves showed average curvatures as high as 2.5 mm−1 which also occurred at the leaflet commissures. The results of the study have been compared to values of stress obtained from numerical analysis of closed polyurethane valve leaflets reported in the literature. The highest stresses in the closed position also occurred at the valve commissures and were of the same magnitude, but greater than the stresses predicted in this experimental study of polyurethane valves in the open position.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3