In Vitro Determination of the Curvatures and Bending Strains Acting on the Leaflets of Polyurethane Trileaflet Heart Valves During Leaflet Motion

Author:

Corden J1,David T1,Fisher J1

Affiliation:

1. Department of Mechanical Engineering, University of Leeds

Abstract

Leaflet tears originating from the free leaflet edge and calcification around the commissural region are common modes of failure exhibited by explanted bioprosthetic trileaflet heart valves. These may be a result of the cyclic bending and high levels of curvature that affect the leaflets within these areas during normal valve operation. These high leves of curvature occur in a short time period (approximately 20 ms) during rapid leaflet opening and to a lesser degree during leaflet closure. The curvatures that occur at the free leaflet edge of two designs of polyurethane trileaflet heart valve were determined in vitro at various stages during a cardiac cycle using a high-speed video camera (1000 frames/s). Significant deformations at the free leaflet edge were observed and bending radii as low as 0.55 ± 0.125 mm (mean ± standard deviation) were present during leaflet opening, 0.76 ± 0.24 mm during leaflet closure and 1.01 ± 0.27 mm while the valve was fully open during peak systole. The values of curvature were used to determine the values of bending strain and bending stress acting at the free leaflet edge using thin shell bending theory. The calculated values of bending strain were a maximum during the leaflet flexure associated with valve opening. These high levels of bending strain, which occur for short periods of time, are likely to be an important determinant of the valve's durability. It has been shown that the method of manufacture significantly influenced the level of bending strain in the valve leaflets. Valves manufactured using a dip-casting technique resulted in open leaflet bending strains up to 31 per cent lower than valves manufactured from solvent-cast sheets of polyurethane.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3