Affiliation:
1. Department of Mechanical Engineering, University of Leeds
Abstract
Leaflet tears originating from the free leaflet edge and calcification around the commissural region are common modes of failure exhibited by explanted bioprosthetic trileaflet heart valves. These may be a result of the cyclic bending and high levels of curvature that affect the leaflets within these areas during normal valve operation. These high leves of curvature occur in a short time period (approximately 20 ms) during rapid leaflet opening and to a lesser degree during leaflet closure. The curvatures that occur at the free leaflet edge of two designs of polyurethane trileaflet heart valve were determined in vitro at various stages during a cardiac cycle using a high-speed video camera (1000 frames/s). Significant deformations at the free leaflet edge were observed and bending radii as low as 0.55 ± 0.125 mm (mean ± standard deviation) were present during leaflet opening, 0.76 ± 0.24 mm during leaflet closure and 1.01 ± 0.27 mm while the valve was fully open during peak systole. The values of curvature were used to determine the values of bending strain and bending stress acting at the free leaflet edge using thin shell bending theory. The calculated values of bending strain were a maximum during the leaflet flexure associated with valve opening. These high levels of bending strain, which occur for short periods of time, are likely to be an important determinant of the valve's durability. It has been shown that the method of manufacture significantly influenced the level of bending strain in the valve leaflets. Valves manufactured using a dip-casting technique resulted in open leaflet bending strains up to 31 per cent lower than valves manufactured from solvent-cast sheets of polyurethane.
Subject
Mechanical Engineering,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献