Studies of Blood Flow in Arterial Bifurcations Using Computational Fluid Dynamics

Author:

Xu X Y1,Collins M W1

Affiliation:

1. Department of Mechanical Engineering and Aeronautics, City University, London

Abstract

The local blood flow in arteries, especially at bends and bifurcations, is correlated with the distribution of atherosclerotic lesions. The flow is three-dimensional, unsteady and difficult to measure in vivo. In this paper a numerical treatment of blood flow in general three-dimensional arterial bifurcations is presented. The flow is assumed to be laminar and incompressible, the blood non-Newtonian and the vessel wall rigid. The three-dimensional time-dependent Navier-Stokes equations are employed to describe the flow, and a newly developed computational fluid dynamics (CFD) code AST EC based on finite volume methods is used to solve the equations. A comprehensive range of code validations has been carried out. Good agreement between numerical predictions and in vitro model data is demonstrated, but the correlation with in vivo measurements is less satisfactory. Effects of the non-Newtonian viscosity have also been investigated. It is demonstrated that differences between Newtonian and non-Newtonian flows occur mainly in regions of flow separation. With the non-Newtonian fluid, the duration of flow separation is shorter and the reverse flow is weaker. Nevertheless, it does not have significant effects on the basic features of the flow field. As for the magnitude of wall shear stress, the effect of non-Newtonian viscosity might not be negligible.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling analysis of pulsatile non-Newtonian blood flow in a renal bifurcated artery with stenosis;International Journal of Thermofluids;2024-05

2. IMM FSI Model Validations and Applications for Incompressible Flows;Computational Fluid-Structure Interaction;2019

3. IOM FSI Model Validations and Applications;Computational Fluid-Structure Interaction;2019

4. Fluid Flow at Branching Junctions;International Journal of Fluid Mechanics Research;2015

5. Geometric modeling and numerical simulation of the blood flow in human arterial system;2007 IEEE International Conference on Robotics and Biomimetics (ROBIO);2007-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3