Analysis, design, and creation of a learning program in Big Data at the higher education level: Case study Instituto Tecnológico Superior de Rioverde, SLP

Author:

Mendoza-González Omar1ORCID,Amador-García Mónica1ORCID,Torres-Meraz Yurivia1ORCID,García-Padrón Fabiola1ORCID

Affiliation:

1. Tecnológico Nacional de México/ITS de Rioverde

Abstract

In this paper results of a quantitative and qualitative study are shown to identify interest and acceptance level of Big Data in university students. The creation of a learning program is proposed that will allow students to obtain the necessary knowledge to form a solid foundation regarding Big Data, as well as the necessary tools to start working with this technology. A survey has been carried out of students who study the Educational Programs of Computer Engineering and Engineering in Computer Systems at ITSRV, the results show that 41% of the respondent’s report having zero knowledge of Big Data, 51.28% mention that it is important to learn about the subject by development professional and the most suitable way, according to the answers, is through a workshop or a certification. Of the eight most used Big Data tools, Hadoop and Spark were the ones identified by the respondents, due to this, and the literature reviewed, it is important that spaces and Big Data learning programs are generated in higher level institutions that allow Students obtain the necessary basic knowledge and identify applications of Big Data in the professional and job context.

Publisher

ECORFAN

Reference12 articles.

1. Aguilar, L. J. (2013). Big Data de grandes volúmenes de datos en organizaciones. México: Alfaomega.

2. Becerra, J. L. (2015). https://cio.com.mx. Obtenido de https://cio.com.mx/big-data-que-esta-pasando-en-mexico/

3. Caballero, Roldán Rafael; Marín, Martín Enrique; Riesco, Rodríguez Adrián (2018). Big Data con Python. Recolección, almacenamiento y proceso. Universidad Complutense de Madrid. España: Alfaomega.

4. Chambers Bill, Zaharia Matei (2018). Spark: The Definitive Guide, EUA: Databricks

5. Corea, Francesco (2019). An Introduction to Data: Everything You Need to Know About AI, Big Data and Data Science. EUA: Springer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3