Affiliation:
1. Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán
Abstract
Business intelligence (BI) integrates and analyzes the behavior of historical data streams, obtaining predictions. The project allows companies in the agricultural sector dedicated to the cultivation and export of avocados to make decisions based on artificial intelligence, promoting growth and competitiveness in the market. Models that apply data analytics are implemented through simple linear regression and recurrent neural networks (RNN). To carry out the project, data extraction, transformation, and loading (ETL) processes were used. The coding was developed in Python with the Django framework, using the sklearn, linear_model, LinearRegression, seaborn, stastsmodels and tensorflow libraries, among others. In the predictions for the years 2016 to 2021, greater precision was verified in the linear regression model. When making the export projection for the next six years, the results coincide with a minimal difference between the two models.
Subject
Applied Mathematics,General Mathematics
Reference33 articles.
1. Antona Cortés, C. (2017). Herramientas modernas en redes neuronales: la librería Keras (Bachelor's thesis). URL: http://hdl.handle.net/10486/677854
2. Aguilar, L. J. (2019). Inteligencia de negocios y analítica de datos: una visión global de business intelligence & analytics. Alpha Editorial. URL: https://books.google.es/books?hl=es&lr=&id=ifR5EAAAQBAJ&oi=fnd&pg=PR7&dq=Inteligencia+de+negocios+y+anali%CC%81tica+de+datos:+una+visio%CC%81n+global+de+business+intelligence+%26+analytics&ots=bBjkKLrG-b&sig=7L5GuDH2yqWhzNYQ2uyC3IRLl-w#v=onepage&q=Inteligencia%20de%20negocios%20y%20anali%CC%81tica%20de%20datos%3A%20una%20visio%CC%81n%20global%20de%20business%20intelligence%20%26%20analytics&f=false
3. Amaya, K. L. L. (2022). Presentan evaluación de la dinámica de agua en Hydrus-1D para tres suelos de ladera cultivados con aguacate Hass (persea americana) en el Valle del Cauca, Colombia. Investigación e Innovación en Ingenierías, 10(1), 75-98. URL: https://revistas.unisimon.edu.co/index.php/innovacioning/article/view/4811 DOI: 10.17081/invinno
4. Atienza, R. (2020). Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more. Packt Publishing Ltd. URL: https://books.google.es/books?hl=es&lr=&id=68rTDwAAQBAJ&oi=fnd&pg=PP1&dq=Advanced+Deep+Learning+with+TensorFlow+2+and+Keras:+Apply+DL,+GANs,+VAEs,+deep+RL,+unsupervised+learning,+object+detection+and+segmentation,+and+more&ots=ttaE9FhhGI&sig=XXTcWhBNT55aEqElkh4EwbATxN4#v=onepage&q=Advanced%20Deep%20Learning%20with%20TensorFlow%202%20and%20Keras%3A%20Apply%20DL%2C%20GANs%2C%20VAEs%2C%20deep%20RL%2C%20unsupervised%20learning%2C%20object%20detection%20and%20segmentation%2C%20and%20more&f=false
5. Benítez, Y. L. (2019). Business intelligence. ADGG102PO. IC Editorial. URL: https://books.google.es/books?hl=es&lr=&id=oEwpEAAAQBAJ&oi=fnd&pg=PT5&dq=Ben%C3%ADtez,+Y.+L.+(2019).+Business+intelligence.+ADGG102PO.+IC+Editorial.&ots=ga_1Z0DxLC&sig=Dt0kanGjRGoR0LfsIlNnUZk6dII#v=onepage&q&f=false