Automatic identification of sentiment in unstructured text

Author:

Morales-Castro José Carmen1,Pérez-Crespo José Armando1ORCID,Prasad-Mukhopadhyay Tirtha1ORCID,Guzmán-Cabrera Rafael1ORCID

Affiliation:

1. Universidad de Guanajuato

Abstract

The constant increase of information in digital format forces us to have new tools that allow us to download, organize and analyze the information available on the web. One of the analyses performed on unstructured information is polarity identification. In this paper we present a method to carry out polarity identification in unstructured texts. Specifically, texts downloaded from the social network Twitter are used. The current popularity of social networks, has caused a great prominence among different users for the generation of information day by day. Twitter presents us with a great challenge in the automatic processing of natural language, mainly when the number of opinions is very large and automatic processing is required. In our case, in the determination of the polarity contained in a tweet. In this paper we present results obtained using different machine learning methods widely known in the state of the art, such as: Support Vector Machine, Naive Bayes, Logistic Regression, Nearest Neighbors and Random Forest, which are used in two implemented classification scenarios: cross-validation and training and test sets. Two data sets are used for the evaluation of the implemented methodology. The best results are obtained with Support Vector Machine for both datasets, the obtained accuracy values higher than 83 % allow to see the viability of the implemented methodology.

Publisher

ECORFAN

Subject

General Medicine

Reference18 articles.

1. [1] Gelbukh, A.J.K.S., Procesamiento de lenguaje natural y sus aplicaciones. 2010. 1: p. 6-11.

2. [2] Pacheco-Luz, E.T., F. Trujillo-Romero, and G.J.R.C.S. Juárez-López, Clasificación semántica de textos no estructurados mediante un enfoque evolutivo. 2015. 95: p. 49-59.

3. [3] Go, A., R. Bhayani, and L.J.C.N.p.r. Huang, Stanford, Twitter sentiment classification using distant supervision. 2009. 1(12): p. 2009.

4. [4] Benítez Andrades, J.A., Clasificación automática de textos sobre Trastornos de Conducta Alimentaria (TCA) obtenidos de Twitter. 2021.

5. [5] Vera Lagos, V., Detección de misoginia en textos cortos mediante clasificadores supervisados. 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3