Visualización de un flujo de convección mediante un arreglo tipo Schlieren

Author:

Morales-Larraga Alan1ORCID,Gómez-Vieyra Armando1ORCID,Real-Ramírez César Augusto1ORCID,Miranda-Tello Jóse Raúl1ORCID

Affiliation:

1. Universidad Autónoma Metropolitana

Abstract

In this work a Schlieren system is proposed. It is used to visualizing a convection flow, caused by the cooling surface a Peltier cell. The experimental assembly elements are a white LED light source (450 nm – 650 nm) that consumes 300 nW of measured electrical power, a Z-type optical reflective relay, a knife, an image acquisition system based on an Edmund EO02018C camera with CMOS RGB sensor and optomechanical components. A program for the analysis of the reference and the convection flow video was designed. As a first step, numerical integration and the phase unwrapping were carrid out to obtain the temperature gradients of the phenomenon under study and its temporal evolution. Then, each detection layer was analyzed, processing the data that provide more information on this phenomenon. It is important to note that the red layer of the camera has a better contrast in the visualization of the phenomenon, however, it is more affected by undesirable light diffraction. Therefore, the green layer of the camera is optimal for analyzing the phenomenon, this study confirms that that the Schlieren technique is ideal for observing phenomena where the temperature gradient is small and there are convection flows.

Publisher

ECORFAN

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3