Técnicas de aprendizaje automático en el diagnóstico de aerogeneradores

Author:

García Uriel A1,Ibargüengoytia Pablo H1,Díaz González Lorena1ORCID,Hermosillo Valadez Jorge1ORCID

Affiliation:

1. Instituto Nacional de Electricidad y Energías Limpias

Abstract

The Mexican Center for Innovation in Wind Energy (CEMIE-Eólico) designed a wind turbine diagnostic system based on turbine behavior models using the signals of the Supervisory Control and Data Acquisition system (SCADA). The system provides a pattern of variables that exhibit abnormal behavior in the presence of a fault. The patterns are formed with the detection of the abnormal behavior of the variables during a time window in which the failure manifests itself. This paper presents the application of machine learning techniques for the identification of faults in wind turbines after the diagnostic system. The training and validation data were obtained from the simulation of six different faults in the wind turbine using the Mexican Wind Machine (MEM) designed at the National Institute of Electricity and Clean Energy (INEEL). The diagnostic system was applied, profiles of abnormal behavior were generated and experiments were carried out for the multiclass classification of fault patterns using the "Random Forest" algorithm. Finally, the algorithm performance was evaluated using accuracy and precision metrics achieving 91% in the classification of patterns to identify the root failure.

Publisher

ECORFAN

Reference22 articles.

1. WMC. (26 de 01 de 2010). Recuperado el 01 de 03 de 2018, de WMC: https://wmc.eu/focus6.php

2. AMDEE. (20 de Septiembre de 2017). Recuperado el 30 de Mayo de 2019, de La Asociación Mexicana de Energía Eólica A.C “AMDEE”: http://www.amdee.org

3. Arteaga Celedonio, A. (2019). Estrategias de eficiencia energética en el diseño de un centro empresarial en Pacasmayo (Tesis parcial).

4. Christopher M., B. (2006). Pattern Recognition and Machine Learning. New York: Springer.

5. García Márquez, F., MarkTobias, A., Pinar Pérez, J., & Papaelias, M. (2012). Condition monitoring of wind turbines: Techniques and methods. ELSEVIER, 169-178.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3