Affiliation:
1. Universidad de Guanajuato
Abstract
The number of social media users is constantly growing. Automatic sentiment analysis in unstructured text using artificial intelligence is a tool that allows organizations to identify areas for improvement based on users' opinions. Natural language processing enables computational treatment of these opinions through emotion analysis and polarity identification in texts. This work focuses on the automatic identification of misogyny in unstructured texts using different classification scenarios and machine learning methods, as well as the use of meta classifiers, with the aim of identifying the pre-processing and processing techniques that lead to the best performance in this task. The results obtained show the effectiveness of automatic sentiment analysis tools on Twitter and its importance in better understanding complex social phenomena.
Subject
General Medicine,General Chemistry
Reference21 articles.
1. Albancando Robles, A. d. P. Análisis de efectividad al implementar la técnica de árboles de decisión del enfoque de aprendizaje de máquina para la determinación de avalúos masivos para las UPZ 79 Calandaima, 65 Arborizadora y 73 Garcés Navas.
2. Apidianaki, M., Mohammad, S., May, J., Shutova, E., Bethard, S., & Carpuat, M. (2018). Proceedings of the 12th international workshop on semantic evaluation. Paper presented at the Proceedings of The 12th International Workshop on Semantic Evaluation.
3. Aravena Guerrero, M. R. (2023). La política del hashtag: campañas feministas en Twitter durante el proceso constituyente.
4. Barve, A., Rahate, M., Gaikwad, A., Patil, P. J. I. R. J. o. E., & Technology. (2018). Terror Attack Identifier: Classify using KNN, SVM, Random Forest algorithm and alert through messages. 4.
5. Benítez Andrades, J. A. (2021). Clasificación automática de textos sobre Trastornos de Conducta Alimentaria (TCA) obtenidos de Twitter.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Misogyny Detection in Bilingual Texts Using FastText and Explainable AI;2024 International Conference on Engineering & Computing Technologies (ICECT);2024-05-23