Automatic identification of misogynistic sentiments on social networks

Author:

MORALES-CASTRO José Carmen1,HERNÁNDEZ-RAYAS Angelica1,RUÍZ-PINALES José1,GUZMÁN-CABRERA Rafael1

Affiliation:

1. Universidad de Guanajuato

Abstract

The number of social media users is constantly growing. Automatic sentiment analysis in unstructured text using artificial intelligence is a tool that allows organizations to identify areas for improvement based on users' opinions. Natural language processing enables computational treatment of these opinions through emotion analysis and polarity identification in texts. This work focuses on the automatic identification of misogyny in unstructured texts using different classification scenarios and machine learning methods, as well as the use of meta classifiers, with the aim of identifying the pre-processing and processing techniques that lead to the best performance in this task. The results obtained show the effectiveness of automatic sentiment analysis tools on Twitter and its importance in better understanding complex social phenomena.

Publisher

ECORFAN

Subject

General Medicine,General Chemistry

Reference21 articles.

1. Albancando Robles, A. d. P. Análisis de efectividad al implementar la técnica de árboles de decisión del enfoque de aprendizaje de máquina para la determinación de avalúos masivos para las UPZ 79 Calandaima, 65 Arborizadora y 73 Garcés Navas.

2. Apidianaki, M., Mohammad, S., May, J., Shutova, E., Bethard, S., & Carpuat, M. (2018). Proceedings of the 12th international workshop on semantic evaluation. Paper presented at the Proceedings of The 12th International Workshop on Semantic Evaluation.

3. Aravena Guerrero, M. R. (2023). La política del hashtag: campañas feministas en Twitter durante el proceso constituyente.

4. Barve, A., Rahate, M., Gaikwad, A., Patil, P. J. I. R. J. o. E., & Technology. (2018). Terror Attack Identifier: Classify using KNN, SVM, Random Forest algorithm and alert through messages. 4.

5. Benítez Andrades, J. A. (2021). Clasificación automática de textos sobre Trastornos de Conducta Alimentaria (TCA) obtenidos de Twitter.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Misogyny Detection in Bilingual Texts Using FastText and Explainable AI;2024 International Conference on Engineering & Computing Technologies (ICECT);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3