Methodology for the development of augmented reality applications for the elimination of errors in the interpretation of manufacturing drawings
-
Published:2022-12-31
Issue:
Volume:
Page:18-24
-
ISSN:2523-6822
-
Container-title:Revista Tecnologías en Procesos Industriales
-
language:en
-
Short-container-title:JTIP
Author:
Meraz-Méndez Manuel1, Reynoso-Jardon Elva Lilia1ORCID, Corral-Ramírez Guadalupe1ORCID
Affiliation:
1. Universidad Tecnológica de Chihuahua
Abstract
Nowadays, precision machining processes have been widely used in the manufacture of products mainly focused on aerospace, automotive, mold manufacturing and various types of products that demand high production volumes, precision and surface quality. However, these manufacturing processes are not exempt from errors and failures during the machining process. Recent studies found that the main errors are due to the interpretation of the information in the manufacturing drawings due to lack of experience or training of the personnel. This research project aims to eliminate errors due to misinterpretation of information in Computer Numerical Control (CNC) machining processes through the implementation of a methodology to develop Augmented Reality (AR) applications for the interpretation of manufacturing drawings. Its main contribution is to provide virtual support to the operating personnel obtaining multiple benefits such as reducing downtime due to failures in the machining process, ensuring the optimal operation of the machines, avoiding collisions of the tools and ensuring the quality of the products.
Subject
General Economics, Econometrics and Finance
Reference10 articles.
1. Battaglia, S., Badiali, G., Cercenelli, L., Bortolani, B., Marcelli, E., Cipriani, R., Contedini, F., Marchetti, C., & Tarsitano, A. (2019). Combination of CAD/CAM and Augmented Reality in Free Fibula Bone Harvest. Plastic and Reconstructive Surgery - Global Open, 7(11). https://doi.org/10.1097/GOX.0000000000002510 2. Bravo, C., Aguilar-Castro, J., Ríos, A., Aguilar-Martin, J., & Rivas, F. (2011). Arquitectura basada en inteligencia artificial distribuida para la gerencia integrada de producción industrial. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 8(4), 405–417. https://doi.org/10.1016/j.riai.2011.09.013 3. Furht, B. (2014). Handbook of Augmented Reality (B. Furht (ed.); 1st ed.). Springer. https://doi.org/https://doi.org/10.1007/978-1-4614-0064-6 4. Gallo, T., Cagnetti, C., Silvestri, C., & Ruggieri, A. (2021). Industry 4.0 tools in lean production: A systematic literature review. Procedia Computer Science, 180(2019), 394–403. Garza, L. E., Pantoja, G., Ramírez, P., Ramírez, H., Rodríguez, N., González, E., Quintal, R., & Pérez, J. A. (2013). Augmented reality application for the maintenance of a flapper valve of a fuller-kynion type m pump. Procedia Computer Science, 25, 154–160. https://doi.org/10.1016/j.procs.2013.11.019 5. Garza, L. E., Pantoja, G., Ramírez, P., Ramírez, H., Rodríguez, N., González, E., Quintal, R., & Pérez, J. A. (2013). Augmented reality application for the maintenance of a flapper valve of a fuller-kynion type m pump. Procedia Computer Science, 25, 154–160. https://doi.org/10.1016/j.procs.2013.11.019
|
|