Parasitism of Autumnal Morphs of the Soybean Aphid (Hemiptera: Aphididae) by Binodoxys communis (Hymenoptera: Braconidae) on Buckthorn

Author:

Asplen Mark K1,Wyckhuys Kris A G2,Heimpel George E1

Affiliation:

1. Department of Entomology, University of Minnesota, St. Paul, MN 55128

2. International Center for Tropical Agriculture CIAT, Km 17, Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia

Abstract

Abstract The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is both heteroecious and holocyclic, seasonally alternating between buckthorn (Rhamnus spp.), (the primary, overwintering host) and soybean, Glycine max (L.) Merr. (the secondary host). Recently, a classical biological control program for this invasive pest has been implemented in North America using the Asian aphidiine braconid wasp Binodoxys communis Gahan. Two critical, related questions regarding the overwintering biology of B. communis are 1) does the parasitoid maintain fidelity to A. glycines throughout the aphid life cycle and follow it to its primary host; and, if it does, 2) is parasitoid migration facilitated by phoretic movement within buckthorn-specific winged aphids? In the laboratory, we compared B. communis parasitism on several different autumnal morphs of A. glycines: winged gynoparae (fall migrants) and their oviparous offspring on buckthorn, fourth-instar alatoid nymphs that would form either gynoparae or summer migrants on soybean, and third-instar gynoparous alatoid nymphs on soybean. We also introduced gynoparae and B. communis onto caged buckthorn plants in southeastern Minnesota to examine autumnal parasitism under natural conditions. In both the laboratory and field, parasitism rates of oviparae were much higher than those of gynoparae. In addition, B. communis rarely completed development on fourth-instar alatoid nymphs. Although wasps successfully developed on third-instar gynoparous nymphs, these hosts mummified before forming wings. These results suggest that although at least one buckthorn-specific morph of A. glycines seems suitable for B. communis parasitism, it is unlikely that alate-mediated dispersal of immature parasitoids is an adaptive strategy to locate Rhamnus in this species.

Publisher

Oxford University Press (OUP)

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3