Glutathione Transferase and Cytochrome P450 (General Oxidase) Activity Levels in Candidatus Liberibacter Asiaticus-Infected and Uninfected Asian Citrus Psyllid (Hemiptera: Psyllidae)

Author:

Tiwari Siddharth1,Pelz-Stelinski Kirsten1,Mann Rajinder S1,Stelinski Lukasz L1

Affiliation:

1. Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850

Abstract

Abstract Candidatus Liberibacter asiaticus (Las) has been reported to increase the susceptibility of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), to selected insecticides. Reduced general esterase activity in Las-infected, compared with uninfected, D. citri has been proposed as a possible explanation for this difference in insecticide susceptibility. The current study was conducted to quantify glutathione transferase (GST) and cytochrome P450 (general oxidase) activities in Las-infected D. citri to further explain the possible mechanisms for altered susceptibility to insecticides due to Las infection. GST and cytochrome P450 activities (indirectly through general oxidase levels) were quantified in Las-infected and uninfected D. citri nymphs and adults. Mean (±SEM) GST activity was significantly lower in Las-infected (468.23 ± 26.87 /µmol/min/mg protein) than uninfected (757.63 ± 59.46 µmol/min/mg protein) D. citri adults. Likewise, mean cytochrome P450 activity was significantly lower in Las-infected (0.23 ± 0.02 equivalent units [EU] cytochrome P450/mg protein) than uninfected (0.49 ± 0.05 EU cytochrome P450/mg protein) D. citri adults. Immature stages (second and fifth instars) were characterized by significantly lower GST activity than adults for uninfected D. citri. However, cytochrome P450 activity was significantly higher in second instar nymphs than adults and fifth-instar nymphs for uninfected D. citri. Lower activities of GST and general oxidase in Las-infected D. citri indicate that infection with Las alters D. citri physiology in a manner that could increase insecticide susceptibility. The reduced activities of these detoxifying enzymes due to Las infection may be explained by examining expression levels of associated genes in Las-infected and uninfected D. citri.

Publisher

Oxford University Press (OUP)

Subject

Insect Science

Reference53 articles.

1. Colorado potato beetle (Coleoptera: Chrysomelidae): effects of combinations of Beauveria bassiana with insecticides.;Anderson;J. Econ. Entomol.,1989

2. An enzyme from rat liver catalyzing conjugation with glutathione.;Booth;Biochem. J.,1961

3. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance.;Brogdon;J. Am. Mosq. Control,1997

4. Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique.;Casimiro;J. Med. Entomol.,2006

5. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase.;Clark;Pestic. Biochem. Physiol.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3