Arthropod Surveillance Programs: Basic Components, Strategies and Analysis

Author:

Cohnstaedt Lee W1,Rochon Kateryn2,Duehl Adrian J3,Anderson John F4,Barrera Roberto5,Su Nan-Yao6,Gerry Alec C7,Obenauer Peter J8,Campbell James F1,Lysyk Tim J2,Allan Sandra A3

Affiliation:

1. Center for Grain and Animal Health Research, USDA—ARS, Manhattan, KS

2. Agriculture and Agri-Food Canada, Lethbridge, AB, Canada

3. Center for Medical, Agricultural, and Veterinary Entomology, USDA—ARS, Gainesville, FL

4. Connecticut Agricultural Experiment Station, New Haven, CT

5. Dengue Branch, Centers for Disease Control, San Juan, Puerto Rico

6. University of Florida, Ft. Lauderdale, FL

7. University of California, Riverside, CA

8. NAMRU-3, US Navy, Cairo, Egypt

Abstract

Abstract Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthropod monitoring technology, techniques, and analysis” presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitoring for urban, medical, and veterinary applications are reviewed. Arthropod surveillance consists of the three components: 1) sampling method, 2) trap technology, and 3) analysis technique. A sampling method consists of selecting the best device or collection technique for a specific location and sampling at the proper spatial distribution, optimal duration, and frequency to achieve the surveillance objective. Optimized sampling methods are discussed for several mosquito species (Diptera: Culicidae) and ticks (Acari: Ixodidae). The advantages and limitations of novel terrestrial and aerial insect traps, artificial pheromones and kairomones are presented for the capture of red flour beetle (Coleoptera: Tenebrionidae), small hive beetle (Coleoptera: Nitidulidae), bed bugs (Hemiptera: Cimicidae), and Culicoides (Diptera: Ceratopogonidae) respectively. After sampling, extrapolating real world population numbers from trap capture data are possible with the appropriate analysis techniques. Examples of this extrapolation and action thresholds are given for termites (Isoptera: Rhinotermitidae) and red flour beetles.

Publisher

Oxford University Press (OUP)

Subject

Insect Science

Reference117 articles.

1. Failure to predict abundance of saltmarsh mosquitoes Aedes sollicitans and A. taeniorhynchus (Diptera: Culicidae) by using variables of tide and weather.;Ailes;J. Med. Entomol.,1998

2. Allan, S A 2010. Chemical ecology of tick-vector interactions, pp. 327–348. InWTakken and G JKnols (eds.), Olfaction of vector-host interactions.Wageningen Academic, Wageningen, Netherlands.

3. Visual ecology of biting flies.;Allan;Annu. Rev. Entomol.,1987

4. Model Based Inference in the Life Sciences: A Primer on Evidence

5. Null hypothesis testing: problems, prevalence, and alternative.;Anderson;J. Wildlife Manage.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3