Differing Success of Defense Strategies in Two Parasitoid Wasps in Protecting their Pupae Against a Secondary Hyperparasitoid

Author:

Harvey Jeffrey A,Gols Rieta1,Tanaka Toshiharu2

Affiliation:

1. Plant Science Group, Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands

2. Applied Entomology, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464–8601, Japan

Abstract

Abstract During their larval development, endoparasitoids are known to dispose of host resources in several different ways. Some parasitoid wasps consume most or all tissues of the host, whereas others consume a small fraction of host resources and either ensure that the host moves away from the pupation site or allow the host to remain close to the parasitoid cocoon(s). Using a single host species, Mythimna separata Walker (Lepidoptera: Noctuidae), this study compares the success of the two pupation strategies in the solitary parasitoids Microplitis sp. and Meteorus pulchricornis Wesmael (Hymenoptera: Braconidae) against attack from a secondary hyperparasitoid, Gelis agilis F. (Hymenoptera: Ichneumonidae). The caudal appendages of M. separata caterpillars parasitized by Microplitis sp. remain physically attached to parasitoid cocoons and the caterpillars behave aggressively when disturbed. However, after Me. pulchricornis larvae emerge from caterpillars of their host, M. separata, the parasitoid larvae pupate in cocoons that are suspended by a single thick thread that hangs 1–2 cm from under a leaf. In choice tests conducted in petri dishes, significantly fewer cocoons of Microplitis sp. attended by caterpillars than unattended cocoons were hyperparasitized by G. agilis. By contrast, Me. pulchricornis cocoons that were hanging from corn, Zea mays L., plants were hyperparasitized as frequently as those which were attached to leaves. We discuss the potentially different selection pressures generated among natural enemies such as predators and hyperparasitoids in determining optimal pupal defense strategies in primary parasitoids.

Publisher

Oxford University Press (OUP)

Subject

Insect Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Biology and Ecology of Parasitoid Wasps of Predatory Arthropods;Annual Review of Entomology;2023-01-23

2. Is direct bodyguard manipulation a parasitoid-induced stress sleep? A new perspective;Biology Letters;2022-11

3. Drosophila glue protects from predation;Proceedings of the Royal Society B: Biological Sciences;2021-03-17

4. Drosophila glue protects from predation;2020-12-23

5. Predators as drivers of insect defenses;Entomological Science;2020-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3