19 Years of Mortar Dating: Learning from Experience

Author:

Ringbom Åsa,Lindroos Alf,Heinemeier Jan,Sonck-Koota Pia

Abstract

Since 1994, our team has gained extensive experience applying accelerator mass spectrometry (AMS) radiocarbon analysis for mortar dating, totaling over 465 samples and 1800+ measured CO2 fractions. Several samples have been analyzed repeatedly. The research covers both Medieval and Classical archaeology. We therefore believe our experience can be helpful when developing preparation procedures for different kinds of mortars in different areas and in varying chronologies. So far, the main areas of interest have been (a) the churches of the Åland Islands (in the archipelago between Finland and Sweden); (b) the churches in the Åboland Archipelago (SW Finland); (c) sites in the Iberian Peninsula including Torre de Palma (a Roman village in Portugal); and (d) Rome, Pompeii, and Herculaneum (Italy). Most of the analyses before 2000 were hydrolized in only two CO2 fractions per sample, and reliability criteria were defined on the basis of how well the ages of the two fractions agree with each other. These criteria have proved most helpful in determining the reliability of 14C mortar analyses. Different types of mortar have been investigated, including lime mortars made both from limestone and marble, pozzolana mortars, fire-damaged mortars, and mortars based on burnt shells. Most importantly, separate lime lumps sampled from these mortars have been analyzed sporadically and recently more systematically. The research also includes different types of hydrolysis applied in the pretreatment. In addition to using 85% phosphoric acid (H3PO4), the experimental research includes tests with smaller concentrations of phosphoric acid, and tests based on 2–3% hydrochloric acid (HCl) dissolutions. To characterize the dissolution process, results are presented as age profiles of 2–5 CO2 fractions. In our experience, pozzolana mortars have been difficult to date, and HCl dissolution should be used only in special cases and in complementary tests.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3