Carbon Isotope Exchange During Calcite Interaction With Brine: Implications for 14C Dating of Hypersaline Groundwater

Author:

Avrahamov Naama,Sivan Orit,Yechieli Yoseph,Lazar Boaz

Abstract

Due to its possible role in solid/water carbon isotope exchange, the effect of salinity on radiocarbon dating of groundwater was examined by batch interaction of alluvial sediment and calcite powder with freshwater (Cl = 100 mg L–1) and Dead Sea (DS) brine (Cl = 225 g L–1). These 2 water types were spiked with H13CO3 tracer and kept under constant agitation for about 1 yr. Several bottles were respiked twice with the tracer. The uptake of the 13C by calcite was monitored through repeated isotopic measurements of the aqueous solutions, and the effect on 14C groundwater dating was evaluated using a simple transport reaction model. The results indicate that the kinetics of water/calcite isotope exchange start with a very fast initial step followed by a slower one, which was used here to simulate the long-term water/solid exchange in “real” aquifers. The exchange model that best fits the data was homogeneous recrystallization that formed just a very thin layer of newly formed calcite. The estimated recrystallization rates for calcite powder/solution interaction were much smaller for the DS brine than for freshwater: 3 × 10–5 to 7 × 10–6 and 9 × 10–4 to 7 × 10–5 mol m2 yr–1, respectively. The 13C experimental data imply a very small effect of the brine/calcite isotope exchange on the 14C age estimate for the brines within the DS coastal aquifer. However, when calcite recrystallization reaches ∼1% of the solid, the 14C groundwater dating estimates will show aging by ∼10%.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Reference37 articles.

1. The source and age of groundwater brines in the Dead Sea area, as deduced from 36Cl and 14C;Ycchicli;Geochimica et Cosmochimica Acta,1996

2. Trace element partition coefficients—a review of theory and applications to geology

3. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3