AMP-EF: An Ensemble Framework of Extreme Gradient Boosting and Bidirectional Long Short-Term Memory Network for Identifying Antimicrobial Peptides

Author:

Zhang Shengli, ,Zhao Ya,Liang Yunyun, ,

Abstract

In recent years, bacterial resistance becomes a serious problem due to the abuse of antibiotics. Antimicrobial peptides (AMPs) have rapidly emerged as the best alternative to antibiotics because of their ability to rapidly target bacteria, fungi, viruses, and cancer cells and counteract the toxins they produce. In this study, a two-branch ensemble framework is proposed to identify AMPs, which integrates extreme gradient boosting (XGBoost) and bidirectional long short-term memory network (Bi-LSTM) with attention mechanism to form a stronger model. First, one-hot coding and -mer are used to represent the sequence features. Then, the feature vectors are input into the two base classifiers respectively to obtain two predicted values. Finally, the prediction results are obtained by compromise. As one of the classical machine learning methods, XGBoost has strong stability and can adapt to datasets of different sizes. Bi-LSTM recurses for each peptide from N-terminal to C-terminal and C-terminal to N-terminal, respectively. As the context information is provided, the model can make more accurate prediction. Our method achieves higher or highly comparable results across the eight independent test datasets. The ACC values of XUAMP, YADAMP, DRAMP, CAMP, LAMP, APD3, dbAMP, and DBAASP are 77.9%, 98.5%, 72.5%, 99.8%, 83.0%, 92.4%, 87.5%, and 84.6%, respectively. This shows that the two-branch ensemble structure is feasible and has strong generalization. The codes and datasets are accessible at https://github.com/z11code/AMP-EF.

Publisher

University Library in Kragujevac

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3