Chaotic Behavior of Lorenz-Based Chemical System under the Influence of Fractals

Author:

Marwan Muhammad, ,Xiong Anda,Han Maoan,Khan Ramla, , ,

Abstract

This research examines a chaotic chemical reaction system based on the variation of the Lorenz system. This study demonstrates that although the first phase portraits of the chemical models under consideration and the Lorenz models are comparable, they do not fully follow all the features of the Lorenz system. Questions about the existence of fractals in systems based on chemical reactions are addressed in the current work. Moreover, we have worked on the hidden information inside in each wings of a chaotic system generated through fractal process, for the first time, with the aid of basin for fractals. Additionally, we looked closely at the dynamics of the model across the basin, which revealed additional details regarding the existence of hidden and cyclic attractors inside each wing. We also produced multi-wings for system (1) in the current study, demonstrating in a general manner that the number of cyclic attractors increase in a direct relation to the number of wings. Moreover, Julia approach is used to accomplish the work of multi-wings, whereas for searching cyclic attractors inside each extra wing, we have used fifteen million initial conditions and compiled them as a basin set. The data generated in this work is also provided within this paper for the ease of readers.

Publisher

University Library in Kragujevac

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3