Affiliation:
1. Department of Mathematics, Lorestan University
Abstract
Let X be a Hilbert C∗-module on C∗-algebra A and p ∈ A. We denote by Dp(A,X) the set of all continuous functions f : A → X, which are Fréchet differentiable on a open neighborhood U of p. Then, we introduce some generalized semi-inner products on Dp(A,X), and using them some Grüss type inequalities in semi-inner product C∗-module Dp(A,X) and Dp(A,Xn) are established.
Publisher
University Library in Kragujevac
Reference9 articles.
1. S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc., New York, 2005.
2. S. S. Dragomir, A Grüss type discrete inequality in inner product spaces and applications, J. Math. Anal. Appl. 250 (2000), 494–511.
3. A. G. Ghazanfari and S. S. Dragomir, Bessel and Grüss type inequalities in inner product modules over Banach ∗-algebra, Linear Algebra Appl. 434 (2011), 944–956.
4. G. Grüss, Über das Maximum des absoluten Betrages von ∫ abf(x)g(x)dx − ∫ abf(x)dx∫ abg(x)dx, Math. Z. 39(1934), 215–226.
5. D. Ilišević and S. Varošanec, Grüss type inequalities in inner Product modules, Proc. Amer. Math. Soc. 133 (2005), 3271–3280.