Abstract
This paper is devoted to studying some applications of the Bochner-Kodaira-Morrey-Kohn identity. For this study, we define a condition which is called (Hq) condition which is related to the Levi form on the complex manifold. Under the (Hq) condition and combining with the basic Bochner-Kodaira-Morrey-Kohn identity, we study the L2 ∂ Cauchy problems on domains in ℂn, Kähler manifold and in projective space. Also, we study this problem on a piecewise smooth strongly pseudoconvex domain in a complex manifold. Furthermore, the weighted L2 ∂ Cauchy problem is studied under the same condition in a Kähler manifold with semi-positive holomorphic bisectional curvature. On the other hand, we study the global regularity and the L2 theory for the ∂-operator with mixed boundary conditions on an annulus domain in a Stein manifold between an inner domain which satisfy (Hn−q−1) and an outer domain which satisfy (Hq).
Publisher
University Library in Kragujevac