Extended Convergence of a Two-Step-Secant-Type Method Under a Restricted Convergence Domain

Author:

ARGYROS IOANNIS K.1,SANTHOSH GEORGE2

Affiliation:

1. Cameron University, Department of Mathematical Sciences

2. National Institute of Technology Karnataka

Abstract

We present a local as well as a semi-local convergence analysis of a two-step secant-type method for solving nonlinear equations involving Banach space valued operators. By using weakened Lipschitz and center Lipschitz conditions in combination with a more precise domain containing the iterates, we obtain tighter Lipschitz constants than in earlier studies. This technique lead to an extended convergence domain, more precise information on the location of the solution and tighter error bounds on the distances involved. These advantages are obtained under the same computational effort, since the new constants are special cases of the old ones used in earlier studies. The new technique can be used on other iterative methods. The numerical examples further illustrate the theoretical results.

Publisher

University Library in Kragujevac

Subject

General Mathematics

Reference18 articles.

1. I. K. Argyros, Y. J. Cho and S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Boca Raton, London, New York, 2012.

2. I. K. Argyros and H. Ren, On the convergence of efficient King-Werner-type methods of order 1 + √ -- 2, J. Comput. Appl. Math. 38 (1982), 383–392.

3. I. K. Argyros, A. Cordero, A. Magreñán and J. R. Torregrosa, On the convergence of a damped Newton-like method with modified right hand side vector, Appl. Math. Comput. 266 (2015), 927–936.

4. I. K. Argyros, S. George and N. Thapa, Mathematical Modeling for the Solution of Equations And Systems of Equations with Applications, 1, Nova Publishes, New York, 2018.

5. I. K. Argyros, S. George and N. Thapa, Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications, 2, Nova Publishes, New York, 2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Convergence of a Family of Kurchatov Like Methods for Nonlinear Equations;Springer Proceedings in Mathematics & Statistics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3