Abstract
The PCI (Partial-Cycle-Index) method of Fujita’s USCI (Unit-Subduced-CycleIndex) approach has been applied to symmetry-itemized enumerations of cubane derivatives, where groups for specifying three-aspects of symmetry, i.e., the point group for chirality/achirality, the RS-stereogenic group for RS-stereogenicity/RS-astereogenicity, and the LR-permutation group for sclerality/ascrelarity are considered as the subgroups of the RS-stereoisomeric group . Five types of stereoisograms are adopted as diagrammatical expressions of , after combined-permutation representations (CPR) are created as new tools for treating various groups according to Fujita’s stereoisogram approach. The use of CPRs under the GAP (Groups, Algorithms and Programming) system has provided new GAP functions for promoting symmetry-itemized enumerations. The type indices for characterizing stereoisograms (e.g., for a type-V stereoisogram) have been sophisticated into RS-stereoisomeric indices (e.g., for a cubane derivative with the composition ). The type-V stereoisograms for cubane derivatives with the composition are discussed under extended pseudoasymmetry as a new concept.
Publisher
University Library in Kragujevac
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献