Abstract
The Hosoya index of is defined as the total number of independent edge sets (number of -matchings ) in . The Hosoya index is one of the most important topological indices in the field of mathematical chemistry because of its relationship with several thermodynamic properties. Therefore, computation of the number of -matchings of various molecular structures has importance. Two methods, one for computing the number of the Hosoya index of catacondensed benzenoid systems and the other for the number of -matchings in benzenoid chains (unbranched catacondensed benzenoid systems), have been presented so far. In this paper, a method based on some transfer matrices to compute the number of -matchings of arbitrary (both unbranched and branched) catacondensed benzenoid systems is presented. Moreover, some algorithms are designed to keep the applicability of the method the same as increases.
Publisher
University Library in Kragujevac
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献