Efficient Two Stage Identification for Face mask detection using Multiclass Deep Learning Approach

Author:

Dhaya R

Abstract

The World Health Organization (WHO) considers the COVID-19 Coronavirus to be a global pandemic. The most effective form of protection is to wear a face mask in public places. Moreover, the COVID-19 pandemic prompted all the countries to set up a lockdown to prevent viral transmission. According to a survey study, the use of facemasks at work decreases the chances of fast transmission. If the facemasks are not used or are worn incorrectly, it contributes to the third and fourth waves of the corona virus spreading throughout the world. This motivates us to conduct an efficient investigation of the face mask identification system and monitor people, who use suitable face mask in public places. Deep learning is the most effective approach for detecting whether or not a person is wearing a face mask in a crowded area. Using a multiclass deep learning technique, this research study proposes an efficient two stage identification (ETSI) for face mask detection. Whereas, the binary classification does not offer information about face mask detection and error. The proposed approach employs CNN's "ReLU" activation function to detect the face mask. Furthermore, in the current pandemic crisis, this research article offers a very efficient and precise approach for identifying COVID-19. Precision has increased as a result of the employment of a multi-class abbreviation in the final output.

Publisher

Inventive Research Organization

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Face Recognition System for Registering Attendance of Students Wearing Mask;2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2023-01-05

2. Attendance Portal Using Face and Speaker Recognition;Intelligent Cyber Physical Systems and Internet of Things;2023

3. Human Body Temperature and Face Mask Audit System for COVID Protocol;2022 Smart Technologies, Communication and Robotics (STCR);2022-12-10

4. Face Mask Detection Using Viola-Jones and Cascade Classifier;2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2022-11-24

5. Detection of Facial Components Utilizing a Modified Version of the Viola-Jones Algorithm;2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA);2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3