Comparison of Stock Price Prediction Models using Pre-trained Neural Networks

Author:

Anand C

Abstract

Several intelligent data mining approaches, including neural networks, have been widely employed by academics during the last decade. In today's rapidly evolving economy, stock market data prediction and analysis play a significant role. Several non-linear models like neural network, generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional heteroscedasticity (ARCH) as well as linear models like Auto-Regressive Integrated Moving Average (ARIMA), Moving Average (MA) and Auto Regressive (AR) may be used for stock forecasting. The deep learning architectures inclusive of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) are used in this paper for stock price prediction of an organization by using the previously available stock prices. The National Stock Exchange (NSE) of India dataset is used for training the model with day-wise closing price. Data prediction is performed for a few sample companies selected on a random basis. Based on the comparison results, it is evident that the existing models are outperformed by CNN. The network can also perform stock predictions for other stock markets despite being trained with single market data as a common inner dynamics that has been shared between certain stock markets. When compared to the existing linear models, the neural network model outperforms them in a significant manner, which can be observed from the comparison results.

Publisher

Inventive Research Organization

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Modeling of Stock Prices Using Transformer Model;2024 9th International Conference on Machine Learning Technologies (ICMLT);2024-05-24

2. Prediction of Stock Price Model through the Implementation of Hybrid BiLSTM-GRU;2024 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI);2024-04-17

3. Estimation of Models for Stock Returns;Computational Economics;2024-03-15

4. Stock price prediction using RNN LSTM based machine learning model;AIP Conference Proceedings;2024

5. Distinctive Assessment of Neural Network Models in Stock Price Estimation;ICST Transactions on Scalable Information Systems;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3