Power Efficient Time-Division Random-Access Model Based in Wireless Communication Networks

Author:

V Suma

Abstract

The conventional infrastructure for mobile-communication is used for providing internet-of-things (IoT) services by the third-generation partnership project (3GPP) with the help of the recently developed cellular internet-of-things (CIoT) scheme. Random-access procedure can be used for connecting the large number of IoT devices using the CIoT systems. This process is advantages as the huge devices are accessed in a concurrent manner. When random access procedures are used simultaneously on a massive number of devices, the probability of congestion is high. This can be controlled to a certain extent through the time division scheme. A power efficient time-division random access model is developed in this paper to offer reliable coverage enhancement (CE) based on the coverage levels (CL). The quality of radio-channel is used for categorization of the CIoT devices after assigning them with CLs. The performance of random-access model can be improved and the instantaneous contention is relaxed greatly by distributing the loads based on their coverage levels into different time periods. Markov chain is used for mathematical analysis of the behavior and state of the devices. The probability of blocking access, success rate and collision control are enhanced by a significant level using this model in comparison to the conventional schemes.

Publisher

Inventive Research Organization

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decision Model of Wireless Communication Scheme Evaluation via Interval Number;Security and Communication Networks;2022-06-28

2. Inertial Sensors and GPS Fusion Using LSTM for Position Estimation of Aerial Vehicle;2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT);2022-01-20

3. Security Analyses of Random Number Generation with Image Encryption Using Improved Chaotic Map;Procedia Computer Science;2022

4. Hybrid Radio Frequency Identification and Global Positioning System Asset Tracking;Proceedings of Third International Conference on Communication, Computing and Electronics Systems;2022

5. Analysis and Design Approach of Footstep Power Generation Using Pressure Sensors;Proceedings of Third International Conference on Communication, Computing and Electronics Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3