WSN based Improved Bayesian Algorithm Combined with Enhanced Least-Squares Algorithm for Target Localizing and Tracking

Author:

Haoxiang Dr. Wang,S. Dr. Smys

Abstract

For wireless sensor network (WSN), localization and tracking of targets are implemented extensively by means of traditional tracking algorithms like classical least-square (CLS) algorithm, extended Kalman filter (EKF) and the Bayesian algorithm. For the purpose of tracking and moving target localization of WSN, this paper proposes an improved Bayesian algorithm that combines the principles of least-square algorithm. For forming a matrix of range joint probability and using target predictive location of obtaining a sub-range probability set, an improved Bayesian algorithm is implemented. During the dormant state of the WSN testbed, an automatic update of the range joint probability matrix occurs. Further, the range probability matrix is used for the calculation and normalization of the weight of every individual measurement. Lastly, based on the weighted least-square algorithm, calculation of the target prediction position and its correction value is performed. The accuracy of positioning of the proposed algorithm is improved when compared to variational Bayes expectation maximization (VBEM), dual-factor enhanced VBAKF (EVBAKF), variational Bayesian adaptive Kalman filtering (VBAKF), the fingerprint Kalman filter (FKF), the position Kalman filter (PKF), the weighted K-nearest neighbor (WKNN) and the EKF algorithms with the values of 0.5%, 7%, 14%, 19%, 33% and 35% respectively. Along with this, when compared to Bayesian algorithm, the computation burden is reduced by the proposed algorithm by a factor of over 80%.

Publisher

Inventive Research Organization

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random Forest, DT And SVM Machine Learning Classifiers for Seed with Advanced WSN Sensor Node;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

2. Adaptive Channel Estimation using Least Mean Square (LMS) for Orthogonal Frequency Division Multiplexing (OFDM);2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2021-12-02

3. Novel Distance Estimation based Localization Scheme for Wireless Sensor Networks using Modified Swarm Intelligence Algorithm;December 2020;2021-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3