Deep Learning Model for Estimation of LV Ejection Fraction from Echocardiogram

Author:

Navina N,Jayashree L. S.,Shanmuhappriya M.

Abstract

Heart failure, a leading global cause of death, poses challenges for early prediction of cardiac dysfunction, especially ejection fraction (EF). This study employs Convolutional Neural Networks (CNNs), utilizing ResNet and MobileNet architectures, on the CAMUS dataset with 500 patient records (2CH and 4CH). The goal is to aid healthcare professionals in accurately measuring EF. The CAMUS dataset, comprising multi-modality cardiac imaging and segmentation data, serves as the foundation. The CNN, ResNet, and MobileNet models are fine-tuned through transfer learning and their performance is evaluated based on accuracy. This comparative analysis identifies the model with the best predictive capabilities for EF, showcasing their potential for earlier diagnosis and intervention. Deep learning techniques enhance cardiac healthcare by providing reliable, noninvasive means of predicting heart failure, reducing its impact on patients and healthcare systems.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3