Author:
Benedict Shajulin,Saji Deepumon,P. Sukumaran Rajesh,M Bhagyalakshmi
Abstract
The biggest realization of the Machine Learning (ML) in societal applications, including air quality prediction, has been the inclusion of novel learning techniques with the focus on solving privacy and scalability issues which capture the inventiveness of tens of thousands of data scientists. Transferring learning models across multi-regions or locations has been a considerable challenge as sufficient technologies were not adopted in the recent past. This paper proposes a Blockchain- enabled Federated Learning Air Quality Prediction (BFL-AQP) framework on Kubernetes cluster which transfers the learning model parameters of ML algorithms across distributed cluster nodes and predicts the air quality parameters of different locations. Experiments were carried out to explore the frame- work and transfer learning models of air quality prediction parameters. Besides, the performance aspects of increasing the Kubernetes cluster nodes of blockchains in the federated learning environment were studied; the time taken to establish seven blockchain organizations on top of the Kubernetes cluster while investigating into the federated learning algorithms namely Federated Random Forests (FRF) and Federated Linear Regression (FLR) for air quality predictions, were revealed in the paper.
Publisher
Inventive Research Organization
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Comprehensive Distributed Framework for Cross-silo Federated Learning using Blockchain;2023 Fifth International Conference on Blockchain Computing and Applications (BCCA);2023-10-24