Sinhala Sign Language Recognition using Leap Motion and Deep Learning

Author:

Kumarawadu Priyantha,Izzath Mohamad

Abstract

A sign language recognition system for low-resource Sinhala Sign Language using Leap Motion (LM) and Deep Neural Networks (DNN) has been presented in this paper. The study extracts static and dynamic features of hand movements of Sinhala Sign Language (SSL) using a LM controller which acquires the position of the palm, radius of hand sphere and positions of five fingers, and the proposed system is tested with the selected 24 letters and 6 words. The experimental results prove that the proposed DNN model with an average testing accuracy of 89.2% outperforms a Naïve Bayes model with 73.3% testing accuracy and a Support Vector Machine (SVM) based model with 81.2% testing accuracy. Therefore, the proposed system which uses 3D non-contact LM Controller and machine learning model has a great potential to be an affordable solution for people with hearing impairment when they communicate with normal people in their day-to-day life in all service sectors.

Publisher

Inventive Research Organization

Subject

General Medicine

Reference25 articles.

1. [1] World Health Organization, “World Report on Hearing”, Geneva; BY-NC-SA 3.0 IGO: Licensee: CC, (2021)

2. [2] M. Ranaweera Premasiri, H. A. D. K. N. Hettiarachchi, J. C. Delmar, P. H. S. Dias, G. S. Mallika, W. G. S. A. K. Rajapaksha, A. N. Jayasekara, S. M. W. Samarakoon et al. (Eds.). “Sri Lankan Sign Dictionary: Sinhala Language”. National Institute of Education, Maharagama, Sri Lanka (2015)

3. [3] B. H. Juang and L. R. Rabiner, “Hidden Markov models for speech recognition,” Technometrics, vol. 33, no. 3, pp. 251–272, (1991)

4. [4] H. Bunke, M. Roth, and E. G. Schukat-Talamazzini, “Off-line cursive handwriting recognition using hidden Markov models,” Pattern recognition, vol. 28, no. 9, pp. 1399–1413, (1995)

5. [5] K. Grobel and M. Assan, “Isolated sign language recognition using hidden Markov models,” in Proceedings of the IEEE International Conference on System, Man and Cybernetics, pp. 162-167, (1996)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3