Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert

Author:

Chen Joy Iong-Zong,Lai Kong-Long

Abstract

With the exponential increase in the usage of the internet, numerous organisations, including the financial industry, have operationalized online services. The massive financial losses occur as a result of the global growth in financial fraud. Henceforth, devising advanced financial fraud detection systems can actively detect the risks such as illegal transactions and irregular attacks. Over the recent years, these issues are tackled to a larger extent by means of data mining and machine learning techniques. However, in terms of unknown attack pattern identification, big data analytics and speed computation, several improvements must be performed in these techniques. The Deep Convolution Neural Network (DCNN) scheme based financial fraud detection scheme using deep learning algorithm is proposed in this paper. When large volume of data is involved, the detection accuracy can be enhanced by using this technique. The existing machine learning models, auto-encoder model and other deep learning models are compared with the proposed model to evaluate the performance by using a real-time credit card fraud dataset. Over a time duration of 45 seconds, a detection accuracy of 99% has been obtained by using the proposed model as observed in the experimental results.

Publisher

Inventive Research Organization

Subject

General Medicine

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Intelligent Financial Fraud Detection Model Using Knowledge Graph-Integrated Deep Neural Network;Journal of Circuits, Systems and Computers;2024-07-19

2. A Combinatorial Predictive Method for Fraud Identification to Uphold Security and Data Integrity;Advances in Business Information Systems and Analytics;2024-06-28

3. Analysis of the benefits of artificial intelligence and human personality study on online fraud detection;International Journal of Law and Management;2024-04-29

4. Ensemble of Graph Neural Networks for Enhanced Financial Fraud Detection;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

5. Machine Learning Approaches for Credit Card Fraud Detection: A Comparative Analysis and the Promise of 1D Convolutional Neural Networks;2024 7th International Conference on Information and Computer Technologies (ICICT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3