Abstract
Computer vision, also known as computational visual perception, is a branch of artificial intelligence that allows computers to interpret digital pictures and videos in a manner comparable to biological vision. It entails the development of techniques for simulating biological vision. The aim of computer vision is to extract more meaningful information from visual input than that of a biological vision. Computer vision is exploding due to the avalanche of data being produced today. Powerful generative models, such as Generative Adversarial Networks (GANs), are responsible for significant advances in the field of picture creation. The focus of this research is to concentrate on textual content descriptors in the images used by GANs to generate synthetic data from the MNIST dataset to either supplement or replace the original data while training classifiers. This can provide better performance than other traditional image enlarging procedures due to the good handling of synthetic data. It shows that training classifiers on synthetic data are as effective as training them on pure data alone, and it also reveals that, for small training data sets, supplementing the dataset by first training GANs on the data may lead to a significant increase in classifier performance.
Publisher
Inventive Research Organization
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing Underwater Image Enhancement using AquaFusion PH -Net;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10